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(b) Knowledge Graph

(c) Biological networks



ll Challeng from Industry

Oy ® hard to scale to large graphs
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ll Challeng from Industry

o ® hard to scale to large graphs
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jl CPU and GPU

CPU GPU

CORE CORE CORE

CORE CORE CORE

O CPU: Large Memory Capacity(main memory); Low Parallelism
O GPU: Limited Memeory Capacity; High Parallelism



ll sSampling-based GNN

® Three Key Steps:
1.Graph Sampling 2. Feature Gathering 3. Model Training
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ll Existing GNN Systems

Step-based task orchestrating methods

1.Graph Sampling CPU .
Assigning three steps
to CPU and GPU |

2. Feature Gathering | > oo
GPU |

3. Model Training




ll Existing GNN Systems

Step-based task orchestrating methods
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ll Task Orchestrating Method Classification
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ll Task Orchestrating Method Classification

CPU . GPU

Graph Sampling

CPU GPU GPU
Feature Gathering
CPU GPU CPU GPU CPU GPU
Model Training

LazyGCN [NeurlPS’20] PaGraph [S0CC’20]  DGL-UVA [Arxiv’20] Data Tiering [ KDD’22]
MariusGNN [EuroSys’23] Refresh [VLDB'24] GAS [ICML'21] GNNLab [EuroSys’22]
DGL [Arxiv’'20] WholeGraph [SC’22]

TurboGNN [TC’23]

Quiver [Arxiv’'23]

DSP [ PPoPP’23]
Ducati [Sigmod’23]

Existing task orchestrating methods contain mainly four cases



ll Case 1: Placing Sample and Gather on CPUs

Graph Sampling and Feature Gather
occupy 80.5 % of the total runtime

CPU o
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ll Case 1: Placing Sample and Gather on CPUs

: |
CPU | i
° I
|
He avy : Grqph sqmpllng | Dataset Sample  Gather (FC) Gather (FT) Total
° |
. Feature Gathering ! Reddit 2.7/11% 9.1/38% 6.0/25% 23.7
: ! Lj-large 128.8/14%  384.4/41% 252.5/27% 935.3
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® Low GPU utilization



ll Case 2: Placing Sample on GPUs

CPU ! |
i . : Sample . Gather Train
' Feature Gcﬂherlng ! Fully pipelined GPU contention
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ll Case 2: Placing Sample on GPUs

GPU

Graph Sampling and Model Training

Sample . Gather

Fully pipelined

competes for GPU computation resources

Train
GPU contention
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ll Case 2: Placing Sample on GPUs

Graph Sampling and Model Training
competes for GPU computation resources

CPU | i
i . | Sample . Gather Train
| o] GPU - '
1 CPU+PCle -

GPU | e |
. Graph Sampling GPU ————A1]2]8}-- -—-- 1-14- 12
: MOdel Training i (a) Ideal situation (b) Actual_sit;tion
e

Configuration S G T Total +pipeline

CPU-based sampling 2.28 2.84 276 7.88 1342 (—56.6%):

GPU-based sampling 0.78 2.69 2.75 6.22 13 54 (-43.1%)
ﬁl_




ll Case 2: Placing Sample on GPUs

GPU

Graph Sampling and Model Training
competes for GPU computation resources

|

1

1

I

| Sample . Gather Train
: ieli GPU contention
! Fully pipelined g

| ,

| o o oo mmmmmmmmmo GPU -
:______________________: CPU+PCle -
Graph Sampling Pu ———-{1]2]8}-- ----
i MOdel Training i (a) Ideal situation (b) Actual situation
e e e e e e e e e e e e —
Configuration S G T Total +pipeline

CPU-based sampling 2.28 2.84 2.76 | 7.88 1 3.42 (-56.6%)

GPU-based sampling 0.78 2.69 2.75 : 6.22 ! 3.54 (-43.1%)




ll Case 2: Placing Sample on GPUs
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ll Case 3: Placing Gather on GPUs

CPU

GPU

-n

eature Gathering

Model Training

Feature Gather and Model Training
competes for GPU memory resources



ll Case 3: Placing Gather on GPUs

60 —A— GPU utilization (%)
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® High GPU utilization
® Faster execution



ll Case 3: Placing Gather on GPUs
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GPU

' Feature Gathering
' Model Training
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GPU

: Placing Gather on GPUs

Feature Gathering
Model Training

Issues:

Feature Gather and Model Training
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® GPU memory contention

competes for GPU memory resources
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ll Case 4: Placing Sample and Gather on GPUs

TTTTTTTTTTT TS Placing all three steps on the GPU
suffers from GPU memory and resource
contention in case 3 and case 4
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ll Case 4: Placing Sample and Gather on GPUs

® Case 4:
CPU
light
GPU

Heavy

TTTTTTTTTTT TS Placing all three steps on the GPU
suffers from GPU memory and resource
contention in case 3 and case 4

— o o e e e e e e e e w

Issues: @ GPU memory and resource contention
® CPU idle



ll Summary

Step-based task orchestrating leads to an imbalanced allocation of
compuvutational and memory resources

)

" GPU resource |
@Sample \ GPU Issue | L contention )
@Gather - £ T C ~\
_ ( ) Inefficient CPU
@ Train @ / | cPu | Issue 2 orocessing
. ssve 3 Inefficient CPU-)
3 steps to 2 devices ssue ' GPU pipelining

\

imbalanced



ll NeutronOrch

Goal:

® Design a new task orchestrating method that avoids dividing takes by
step and fully utilizes heteogeneous resources

Issue 1 " GPU resource |
9 . contention |
@ \ GPU slove lssue 2 " Inefficient CPU
I > | processing |

/7

@ ssve 3 Inefficient CPU-)
ssue GPU pipelining |

new task orchestrating method ?



ll NeutronOrch

Contributions: "GPU rocource
— Issue 1| ¢ ontention
1: Hotness-aware layer-based ~ 7
task Orchestrating S nefficiont CPU
Issue 2 :

_ processing |

2: Super-batch pipelined ——> Issue 3 Inefficient CPU-)
training | GPU pipelining |




Jl Layer-based Task Orchestrating |

Issue 1

slove

>|

GPU resource
contention

]

We decouple the training task by layers and employ the
computation of each sub-task (sample-gather-train) to a specific

device
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Jl Layer-based Task Orchestrating

Offload bottom layer to CPU based on two observations:



Jl Layer-based Task Orchestrating

Offload bottom layer to CPU based on two observations:
® vertices grows exponentially across layers and bottom layer
constitutes over 50% of the training workload
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Jl Layer-based Task Orchestrating

Offload bottom layer to CPU based on two observations:
® vertices grows exponentially across layers and bottom layer
constitutes over 50% of the training workload
® CPU-GPU transfer overhead decreases as transferring
compvuted embeddings instead of raw features

[V|]: 86175
Dim: 602 - - - -
( : : CTRER lepu
I\V|: 28706 | CPU GPU
Dim: 128 I I | I [
1| Nk
1| U
=
[ - Il | A I
model [ | Bottom |krransfe]  Other
Transferf Al layers layer layers
e N - JLb
Bottom layer (a) AllTayers on GPU (b) Layer- aﬁed’task

orchestrating



Jl Layer-based Task Orchestrating

Executing a complete bottom layer in the CPU may
cause the CPU processing a new bottleneck

Batchi ... Batch i+n
Layer 2[ & é;zé
Batch i ... Batch |+n

\ Heavy CPU computation )

(a) naive layer-based
task orchestrating




Issue 2

lov —
ll Hotness-aware Embedding Reusing E:>['"eff'°'e"t0"”]

processing

Selectively compute the embedding of frequently
accessed vertices and reusing them across batches

GPU Batchi .. Batch i+n
Batchi ... Batchi+n Layer 2

LayerZECé%é ééét Layer1[

CPU CPU @ Hot vertices

Batch i ... Batch |+n
- 1'%%@\@%%% - {%
Hothess-aware
\ Heavy CPU computation ) embddings reusing
(a) naive layer-based (b) Hotness-aware

task orchestrating layer-based task orchestrating



ll Hotness-aware Embedding Reusing

CPU

/Hot Vix (version 0)

1

3

5

6

7

9

Bounded stuleness

Hot Vix (version k)
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7

9

\-

~

J

Batch O

o3

Batch N

Full bottom layer embeddings
for each batch
Reduce CPU
compvutation

\Y4

Hot vertice embeddings with
bounded staleness




ll Hybrid Hot Vertices Processing

When GPU resources are significantly powerful than CPU resources,
CPU computation can only provide limited contribution

multiple powerful GPUs

GPU 0 GPUO GPU1 GPU n

I N 4
( CPU ) ( CPU ) provide limited hot
00000 vertices embeddings
00000 ) o000 ) 2

O Hot vertices ratio 20% (O Hot vertices ratio 5%



ll Hybrid Hot Vertices Processing

Assigning hot vertices to both CPU computation and GPU feature

caching
® Minimizing the communication
sl L Sl and compuvutation overhead of
O O O frequently accessed vertices
A Vi . o
" CPU ™ ® Maximizing the utilization of
GPU and CPU memory
OO0
\ J

(OHot vertices to CPU computation 5%
(OHot vertices to GPU feature cache 15%



Issue 3

Inefficient CPU-
GPU pipelining

slove [

| Super-batch Pipelined Training —>

Overlapping tasks across diverse computing resources is essential to
achieve high performance on heterogeneous systems




ll Super-batch Pipelined Training
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achieve high performance on heterogeneous systems
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ll Super-batch Pipelined Training

Overlapping tasks across diverse computing resources is essential to
achieve high performance on heterogeneous systems

Sample-GPU [Jj] Gather-GPU [Train-GPU [l Sample-Gather-Train-CPU

GPU training must wait for the CPU to finish the
embedding computation for hot vertices



ll Super-batch Pipelined Training

Overlapping tasks across diverse computing resources is essential to
achieve high performance on heterogeneous systems

Sample-GPU . Gather-GPU Train-GPU .Sample-Gather—Train-CPU

Epoch i+1

® Lots of bubbles | ~ _ |



ll Super-batch Pipelined Training

Overlapping tasks across diverse computing resources is essential to
achieve high performance on heterogeneous systems

Sample-GPU . Gather-GPU Train-GPU .Sample-Gather-Train-CPU

Epoch i : Epoch i+1

If the hot vertice embeddings required
for Baich 1 are ready, GPU trianing for
Batch 1 can be started earlier



ll Super-batch Pipelined Training

We partition CPU computation within each epoch into multiple
sub-tasks to explore pipelining opportunities

Sample-GPU . Gather-GPU Train-GPU [] Sample-Gather-Train-CPU
Batch 1to 4 Batch 5to 8




ll Super-batch Pipelined Training

We partition CPU computation within each epoch into multiple
sub-tasks to explore pipelining opportunities

Sample-GPU . Gather-GPU Train-GPU [] Sample-Gather-Train-CPU
Super-batch 1 Super-batch 2




ll Super-batch Pipelined Training

Overlapping GPU and CPU computation tasks while strictly control
the staleness of reused embeddings among super-batches

__|Sample-GPU ] Gather-GPU |:|Train-GPU .Sample-Gather-Train-CPU




ll Experimental Setting

Competitors: DGL [Arxiv’'20], GNNLab [Eurosys'22], PaGraph [Socc’'20], GNNAutoScale
ICML'19], DSP [PPoPP'23]

Test Platforms:

Intel Xeon Platinum 8163 CPU (96 cores and 736 GB main memory) and eight NVIDIA V100
(16GB) GPUs

Algor"hms and Datasets: Table 4: Dataset description.

O 3 Graph Neural Networks

Dataset \4 |[E| ftr.dim #L  hid. dim
GCN, GIN, GAT Reddit [12] 232.96K  114.61M 602 41 256
O 6 real world graphs Lj-large [1] 10.69M  224.61M 400 60 256
Soft . ; Orkut [51] 3.1M 117M 600 20 160
ofteware Environment: Wikipedia [23] 136M  4372M 600 16 128
O Ubuntu 18.04 LTS Products (PR) [14] 2.4M 61.9M 100 47 64

O CUDA 10.1 (418.67 driver) PaperslOOM (PA)[14] 1M 16B 128 172 6




ll Overall Results

NeutronOrch shows better performance
than the competitors

O 2.91X-11.51X faster than DGL

O 2.68X-9.72X faster than PaGraph

O 1.52X-2.43X faster than GNNLab

O 1.81-9.18X faster than DGL-UVA

O 7.08-11.05X faster than GNNAutoScale

SDGL#ZPaGraph EGNNLab OIDGL-UVA ©GAS ONeutronOrch

Reddit

Products
(e) GAT

Papers100M

80 2000
W 64 - © 1600
@ b @
E 48+ £ 1200 B
5 32 3 800
: ol [0 o
0 oL O 0 © L
Reddit Products Papers100M Lj-large Orkut Wikipedia
a) GCN b) GCN
80 @) 2000 (b)
W 64 1600
o 1 )
£ 48 @ 1200
£ ] -
S 32 £ 800
16 400
0 | = /. ﬂ 0 | |_| SN H
Reddit Products Papers100M Lj-large Orkut Wikipedia
(c) GraphSAGE (d) GraphSAGE
100 2400
Eso_ Tn-.
p - O
2 60 1600 §
s E N
S 40 - € S N
€ | o S 3 8004 | %
» NN OLY ), N [ ) P s
o 1N D ol N llBm N [IB[1 N [Id]

Lj-large

Orkut
(f) GAT

Wikipedia




ll Multi-GPU Performance

EDGL-UVA PaGraph £ GNNLab ODSP [ NeutronOrch

30 30 60 o %
18 l 8%
5. N 0 ) & g |
1201\ $20 S0, = M X
£ |V g | E | : £254 3
T |W E E : = g 7
10 %g g 2107 & 20- : z |\
1V _ %—r"m ' ‘ / %L g%‘lm
1 2 4 8 2 4 8 1 2 4 8 1 2 4 8
GPU# GPU# GPU# GPU#
(a) Products(bs-512) (b) Products(bs-1024) (c) Papers100M(bs-512) (d) Papers100M(bs-1024)

O Compared with DGL-UVA, PaGraph, O NeutronOrch effectively trains large-scale
GNNLab and DSP, NeutronOrch GNNs by offloading computations to the
achieves on average 6.33X, 5.20X, CPU
2.28X, and 1.36X speedups



ll CPU and GPU Utilization

CPU utilization (%) GPU utilization (%) = Runtime (s)

S, G, and T

represent the

sample, gather,

and train

O NeutronOrch fully utilizes

100 30
S 80 - 24
S 60- 7 = - 18 £
e . i =

o
= 40- # - 12 2
5 - # i
20 - R E - 6
o 1 B o S | Z=H
CPU:SG CPU:S CPU:G CPU:-- NeutronOrch
GPU:T GPUGT GPU:ST GPU:SG T (Our solution)

heterogeneousresources and

achieves better performance

O High GPU utilization ensures shorter

runtime, while CPU offloading boosts

performance



ll Summary

NeutronOrch: Rethinking Sample-based GNN Training under CPU-GPU
Heterogeneous Environments

o Providing insight into the four existing approaches

We provide a comprehensive analysis of resource utilization issues associated with the task
orchestrating methods for sample-based GNN systems on GPU-CPU heterogeneous platforms
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We propose a hotness-aware layer-based task orchestrating method that effectively leverages the
computation and memory resources of the GPU-CPU heterogeneous system



ll Summary

NeutronOrch: Rethinking Sample-based GNN Training under CPU-GPU
Heterogeneous Environments

o Providing insight into the four existing approaches

We provide a comprehensive analysis of resource utilization issues associated with the task
orchestrating methods for sample-based GNN systems on GPU-CPU heterogeneous platforms

0 Proposing a hotness-aware layer-based task orchesirating method

We propose a hotness-aware layer-based task orchestrating method that effectively leverages the
computation and memory resources of the GPU-CPU heterogeneous system

0 Proposing a super-batch pipelined task scheduling method

We propose a super-batch pipelined task scheduling method that seamlessly overlaps different tasks
on heterogeneous resources and efficiently achieves strict bounded staleness



ll Summary

NeutronOrch: Rethinking Sample-based GNN Training under CPU-GPU
Heterogeneous Environments

[l

0 The codes are publicly available on github

Providing insight into the four existing approaches
We provide a comprehensive analysis of resource utilization issues associated with the task
orchestrating methods for sample-based GNN systems on GPU-CPU heterogeneous platforms
Proposing a hotness-aware layer-based task orchestrating method

We propose a hotness-aware layer-based task orchestrating method that effectively leverages the
computation and memory resources of the GPU-CPU heterogeneous system

Proposing a super-batch pipelined task scheduling methc

We propose a super-batch pipelined task scheduling method that seamlessly

on heterogeneous resources and efficiently achieves strict boundedé’ralgg |bns

N <S

T
—’"

https://github.com/Aix-im/Sample-based-GNN



