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Challeng from Industry

GNN dataset size and current GPU capacities [Legion:ATC’23 ]
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CPU-GPU Heterogeneous Platforms
+

Sampling-based GNN Training



CPU and GPU

p CPU：Large Memory Capacity(main memory)；Low Parallelism
p GPU：Limited Memeory Capacity；High Parallelism   
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Sampling-based GNN
l Three Key Steps:

1.Graph Sampling 2. Feature Gathering 3. Model Training
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Existing GNN Systems
Step-based task orchestrating methods

1.Graph Sampling

2. Feature Gathering

3. Model Training

Assigning three steps 
to CPU and GPU

CPU

GPU



Existing GNN Systems
Step-based task orchestrating methods
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DGL [Arxiv’19 ]



Task Orchestrating Method Classification
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Task Orchestrating Method Classification

Existing task orchestrating methods contain mainly four cases
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Case 1: Placing Sample and Gather on CPUs
Graph Sampling and Feature Gather
occupy 80.5 % of the total runtime CPU

GPU
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Model Training



Case 1: Placing Sample and Gather on CPUs

Heavy

light

l inefficient CPU processing

l Low GPU utilization 

Issues:
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Case 3: Placing Gather on GPUs
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Case 3: Placing Gather on GPUs

l High GPU utilization
l Faster execution 

Large batch size
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Case 3: Placing Gather on GPUs

l High GPU utilization
l Faster execution 

Large batch size

l Transfer reduction

High cache ratio
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Case 3: Placing Gather on GPUs

l GPU memory contentionIssues:
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Feature Gather and Model Training
competes for GPU memory resources 



Case 4: Placing Sample and Gather on GPUs

Placing all three steps on the GPU 
suffers from GPU memory and resource 
contention in case 3 and case 4
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Case 4: Placing Sample and Gather on GPUs
l Case 4:

Placing all three steps on the GPU 
suffers from GPU memory and resource 
contention in case 3 and case 4

Heavy

light

l GPU memory and resource contention
l CPU idle

Issues:

CPU

GPU Graph Sampling
Feature Gathering
Model Training



Summary
Step-based task orchestrating leads to an imbalanced allocation of 
computational and memory resources

3 steps to 2 devices

imbalanced

GPU resource 
contention Issue 1

Inefficient CPU 
processingIssue 2

Issue 3 Inefficient CPU-
GPU pipelining



NeutronOrch

l Design a new task orchestrating method that avoids dividing takes by 
step and fully utilizes heteogeneous resources 

Goal:

new task orchestrating method

GPU resource 
contention Issue 1

Inefficient CPU 
processingIssue 2

Issue 3

slove

Inefficient CPU-
GPU pipelining



NeutronOrch

1：Hotness-aware layer-based 
task Orchestrating

Contributions: GPU resource 
contention Issue 1

Inefficient CPU 
processingIssue 2

Inefficient CPU-
GPU pipeliningIssue 32：Super-batch pipelined 

training



Layer-based Task Orchestrating
We decouple the training task by layers and employ the 
computation of each sub-task (sample-gather-train) to a specific 
device

GPU resource 
contention 

slove
Issue 1



Layer-based Task Orchestrating
Offload bottom layer to CPU based on two observations:
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Layer-based Task Orchestrating
Offload bottom layer to CPU based on two observations:
l vertices grows exponentially across layers and bottom layer  

constitutes over 50% of the training workload
l CPU-GPU transfer overhead decreases as transferring 

computed embeddings instead of raw features



Layer-based Task Orchestrating
Executing a complete bottom layer in the CPU may 
cause the CPU processing a new bottleneck



Hotness-aware Embedding Reusing
Selectively compute the embedding of frequently 
accessed vertices and reusing them across batches

Inefficient CPU 
processing

slove
Issue 2



Hotness-aware Embedding Reusing

32 75

1 3 5

Hot Vtx (version 0) 
6 7 9

CPU

GPU Batch 0

... 6 97

Batch N

Bounded staleness

1 3 5 6 7 9
Hot Vtx (version k) 

Full bottom layer embeddings 
for each batch

Reduce CPU 
computation

Hot vertice embeddings with 
bounded staleness



Hybrid Hot Vertices Processing 
When GPU resources are significantly powerful than CPU resources, 
CPU computation can only provide limited contribution

multiple powerful GPUs

provide limited hot 
vertices embeddings



Hybrid Hot Vertices Processing 
Assigning hot vertices to both CPU computation and GPU feature 
caching

l Minimizing the communication 
and computation overhead of 
frequently accessed vertices

l Maximizing the utilization of 
GPU and CPU memory



Super-batch Pipelined Training 
Overlapping tasks across diverse computing resources is essential to 
achieve high performance on heterogeneous systems

slove
Issue 3

Inefficient CPU-
GPU pipelining
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Overlapping tasks across diverse computing resources is essential to 
achieve high performance on heterogeneous systems

GPU training must wait for the CPU to finish the 
embedding computation for hot vertices
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Super-batch Pipelined Training 
Overlapping tasks across diverse computing resources is essential to 
achieve high performance on heterogeneous systems

If the hot vertice embeddings required 
for Batch 1 are ready, GPU trianing for 
Batch 1 can be started earlier

1



Super-batch Pipelined Training 
We partition CPU computation within each epoch into multiple 
sub-tasks to explore pipelining opportunities
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We partition CPU computation within each epoch into multiple 
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Super-batch Pipelined Training 
Overlapping GPU and CPU computation tasks while strictly control 
the staleness of reused embeddings among super-batches



Experimental Setting

Competitors: DGL [Arxiv’20], [Eurosys’22],  [Socc’20],   

[ICML’19],   [PPoPP’23]

Test Platforms:
Intel Xeon Platinum 8163 CPU (96 cores and 736 GB main memory) and eight NVIDIA V100 
(16GB) GPUs

Algorithms and Datasets:
p 3 Graph Neural Networks

GCN, GIN, GAT 
p 6 real world graphs

Softeware Environment：
p Ubuntu 18.04 LTS
p CUDA 10.1 (418.67 driver)



Overall Results

NeutronOrch shows better performance
than the competitors
p 2.91X-11.51X faster than DGL

p 2.68X-9.72X faster than PaGraph

p 1.52X-2.43X faster than GNNLab

p 1.81-9.18X faster than DGL-UVA 

p 7.08-11.05X faster than GNNAutoScale



Multi-GPU Performance

p Compared with DGL-UVA, PaGraph, 

GNNLab and DSP, NeutronOrch 

achieves on average 6.33X, 5.20X, 

2.28X, and 1.36X speedups

p NeutronOrch effectively trains large-scale 

GNNs by offloading computations to the 

CPU



CPU and GPU Utilization

 fully utilizes 

heterogeneousresources and 

achieves better performance

p High GPU utilization ensures shorter 

runtime, while CPU offloading boosts 

performance
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https://github.com/Aix-im/Sample-based-GNN


