IDC-NEU

HHEo At HERTES

NeutronOrch: Rethinking Sample-based GNN Training under
CPU-GPU Heterogeneous Environments

Xin Ai, Qiange Wang, Chunyu Cao, Yanfeng Zhang, Chaoyi
Chen, Hao Yuan, Yu Gu, Ge Yu
School of Computer Science and Engineering
Northeastern University, Shenyang, China

(a) Social Networks

Graph Neuvural Network

diagetic
diabetc naphropathy
N \ alamnc
aygen aca
Kidneygisease = A i
| -angigfensin o Tz
ang. . >
angioensin cogerting enzyime saré-cofinfection
g 2 Gie 3 4
- s e -
patights -
& S respiratongsynarome
hyper@nision i = - o X 3
5 angiotensin i bk h‘n - »
= =i saibov
4 “:n . -angiotensin: ing enzyme
heartailure 0 - » severe acuterg§piratory syndr
angloteqsin (17
a7 atr (3 ikaipiia, 3t
acute respirallry syndrome
angiotensin
angiotensin calféerting enzyme nibesi Beaica
lunginjury ! e
pulmenary hypertension

acute lung failure

(b) Knowledge Graph

(c) Biological networks

ll Challeng from Industry

Oy ® hard to scale to large graphs
Eamo ________________________________ /

10 &

OGB-Paper Uk-Union Alibaba-Taobao UK-2014 Clueweb
(111M, 1.6B) (133M, 5.5B) (1B, 10B) (0.7B, 47.2B) (1B, 42.5B)

GNN dataset size and current GPU capacities [Legion:ATC’23 |

ll Challeng from Industry

o ® hard to scale to large graphs

V100 Memory

- = A100 Memory

- -H100 Memory
R I St S ¢/ | CPU-GPU Heterogeneous Platforms
& : (] (] (] i
& OGB-Paper Uk-Union Alibaba-Taobao UK-2014 Clueweb 4 : S q m p I I n g - b q Sed G N N Trq I n I n g :
(111M, 1.6B) (133M, 5.5B) (1B, 10B) (0.7B,47.2B) (1B, 42.5B) e e I

GNN dataset size and current GPU capacities [Legion:ATC’23 |

jl CPU and GPU

CPU GPU

CORE CORE CORE

CORE CORE CORE

O CPU: Large Memory Capacity(main memory); Low Parallelism
O GPU: Limited Memeory Capacity; High Parallelism

ll sSampling-based GNN

® Three Key Steps:
1.Graph Sampling 2. Feature Gathering 3. Model Training

Y (e
Two-hop Features f Aggregate A
samples &update

Graph I/\I I/\I

{ NV

ll sSampling-based GNN

® Three Key Steps:
2. Feature Gathering 3. Model Training

Two-hop
samples

Graph

ll sSampling-based GNN

® Three Key Steps:
1.Graph Sampling 2. Feature Gathering 3. Model Training

G rwen W re—
Two-hop Features
samples

Graph

|

ll sSampling-based GNN

® Three Key Steps:
1.Graph Sampling 2. Feature Gathering 3. Model Training

Y (e
Two-hop Features f Aggregate A
samples &update

Graph I/\I I/\I

{ NV

ll Existing GNN Systems

Step-based task orchestrating methods

1.Graph Sampling CPU .
Assigning three steps
to CPU and GPU |

2. Feature Gathering | > oo
GPU |

3. Model Training

ll Existing GNN Systems

Step-based task orchestrating methods

/?PU 2.Gather GPU \ CPU i i
. Graph Samplin |

l‘sa':p'e 9%@ 9?0 e ﬁ]“’"yerz : Fea’:::ue GaiFI:erigng :
wo-nop ‘ ayer | :
samples @ (3)() O@® Lay 1| T =

= GNN model i

Graph @) sty —t— GPU . :

@ e Features 437028 %aatt(:;]h 9 : :
QQ% cactor OQ I Model Training i

@™ 0123156789 ocie | ©QE@ 437028] : !

DGL [Arxiv'19]

ll Task Orchestrating Method Classification

CPU . GPU

GPU

Graph Sampling

CPU

GPU

Feature Gathering

CPU GPU CPU GPU GPU

Model Training

ll Task Orchestrating Method Classification

CPU . GPU

Graph Sampling

CPU GPU GPU
Feature Gathering
CPU GPU CPU GPU CPU GPU
Model Training

LazyGCN [NeurlPS’20] PaGraph [S0CC’20] DGL-UVA [Arxiv’20] Data Tiering [KDD’22]
MariusGNN [EuroSys’23] Refresh [VLDB'24] GAS [ICML'21] GNNLab [EuroSys’22]
DGL [Arxiv’'20] WholeGraph [SC’22]

TurboGNN [TC’23]

Quiver [Arxiv’'23]

DSP [PPoPP’23]
Ducati [Sigmod’23]

Existing task orchestrating methods contain mainly four cases

ll Case 1: Placing Sample and Gather on CPUs

Graph Sampling and Feature Gather
occupy 80.5 % of the total runtime

CPU o
i Grqph sqmpllng : Dataset Sample Gather (FC) Gather (FT) Total
' Feature Gathering Reddit | 27/11% 9.1/38% 6.0/25% | 237
| | Lj-large (128.8/14% 3844/41% 2525/27% | 9353
oo Orkut [78.8/10% 3843/48% 249.1/31% | 8133
=== e mmmm oo Wikipedia ~ [209.4/12% 651.8/40% 570.9/33% | 1669.1
GPU Products | 9.9/37% 7.2/27% 41/15% | 268
Papers100M | 11.5/32% 8.6/24% 6.4/18% | 36.84

ll Case 1: Placing Sample and Gather on CPUs

: |
CPU | i
° I
|
He avy : Grqph sqmpllng | Dataset Sample Gather (FC) Gather (FT) Total
° |
. Feature Gathering ! Reddit 2.7/11% 9.1/38% 6.0/25% 23.7
: ! Lj-large 128.8/14% 384.4/41% 252.5/27% 935.3
e Orkut 78.8/10% 384.3/48% 249.1/31% 813.3
== =mmm—mm——————---—--- Wikipedia ~ 209.4/12% 651.8/40% 570.9/33% 1669.1
I
GPU | ! Products 9.9/37% 7.2/27% 4.1/15% 26.8
. ! : Papers100M 11.5/32% 8.6/24% 6.4/18% 36.84
light | : b
| |
I |
: I

® Low GPU utilization

ll Case 2: Placing Sample on GPUs

CPU ! |
i . : Sample . Gather Train
' Feature Gcﬂherlng ! Fully pipelined GPU contention
R R EEEE PR GPU —1|2|3 ——————— -[1]2]3}-44}---
GPU i______________________i CPU+PCle ——-——41F2P0t———— —-— ——.—-
. Graph Sampling GPU ———— 1} 2]8}f-- ---- 1--1-12}-
: MOdel Training i (a) Ideal situation (b) Actual_sit;tion

ll Case 2: Placing Sample on GPUs

GPU

Graph Sampling and Model Training

Sample . Gather

Fully pipelined

competes for GPU computation resources

Train
GPU contention
‘/

| o o oo mmmmmmmmmo GPU -
:______________________: CPU+PCle -
Graph Sampling Pu ———-{1]2]8}-- ----
i MOdel Training i (a) Ideal situation (b) Actual situation
e e e e e e e e e e e e —
Configuration S G T Total +pipeline

CPU-based sampling 2.28 2.84 2.76
GPU-based sampling 0.78 2.69 2.75

7.88
6.22

3.42 (-56.6%)
3.54 (-43.1%)

ll Case 2: Placing Sample on GPUs

Graph Sampling and Model Training
competes for GPU computation resources

CPU | i
i . | Sample . Gather Train
| o] GPU - '
1 CPU+PCle -

GPU | e |
. Graph Sampling GPU ————A1]2]8}-- -—-- 1-14- 12
: MOdel Training i (a) Ideal situation (b) Actual_sit;tion
e

Configuration S G T Total +pipeline

CPU-based sampling 2.28 2.84 276 7.88 1342 (—56.6%):

GPU-based sampling 0.78 2.69 2.75 6.22 13 54 (-43.1%)
ﬁl_

ll Case 2: Placing Sample on GPUs

GPU

Graph Sampling and Model Training
competes for GPU computation resources

|

1

1

I

| Sample . Gather Train
: ieli GPU contention
! Fully pipelined g

| ,

| o o oo mmmmmmmmmo GPU -
:______________________: CPU+PCle -
Graph Sampling Pu ———-{1]2]8}-- ----
i MOdel Training i (a) Ideal situation (b) Actual situation
e e e e e e e e e e e e —
Configuration S G T Total +pipeline

CPU-based sampling 2.28 2.84 2.76 | 7.88 1 3.42 (-56.6%)

GPU-based sampling 0.78 2.69 2.75 : 6.22 ! 3.54 (-43.1%)

ll Case 2: Placing Sample on GPUs

light

Heavy

CPU

GPU

|

1

1

I

|

I Sample . Gather
I N

I Fully pipelined

|
1

Train
GPU contention

—

e PP , —
R R EEEE PR GPU —1|2|3 ——————— -[1]2]3}-44}---
T cPu+PCle —— RS — - — - — - -{4}-

raph Sampling
odel Training

GPU ——--41J2)8}--- —--- -

< Q@

Issues: e GPU resource contention

41H-412}-

(a) Ideal situation (b) Actual situation

ll Case 3: Placing Gather on GPUs

CPU

GPU

-n

eature Gathering

Model Training

Feature Gather and Model Training
competes for GPU memory resources

ll Case 3: Placing Gather on GPUs

60 —A— GPU utilization (%)

______________________ 2 A
I I £ 40 gk
CPU . S,
: (I 207 ,—a
|
I [] I u J l 1
| (@)
I Grqph sqmpllng : n | —M— Runtime (s) —A— Memory (GB) _153
I 230001 m —h Q
|] e o0 A B
1 I E B 10 E*
B s P 5 §
0 2 1 1 I Y I ! D
== m e e e ——— - - 128 256 512 1024 2048 4096 8192 10000
Batch size

GPU

(b)

-n

eature Gathering Large batch size

Model Training G

® High GPU utilization
® Faster execution

ll Case 3: Placing Gather on GPUs

__ 60+ —A— GPU utilization (%) Asuuu | —®E—Transfer (GB) —aA— Memory (GB) | A
—————————————————————— §] A o [| A
: | § 407 ‘f‘___..;—f‘ 95000 "~ o _64_
C P U I 2 g0 o E 1 L A)
| | e "] Meee 24000 = R 482
G hS li ' v () ‘ > . - &
| rqp qmp Ing | @ {~m—Runtime (s) —a—Memory (GB) 45 @ :“-';3000- \Aﬁ__ﬁ -3.25
I | 93000 m —h © & T | =
I E 1 Sa L0 8 P L
: | E1500- A=A 6 F 2000 & ~n [1.6
S B .. . 5 § I .
F
0 ————F———T— T 0 1000 —4——F——— 71— 71— 710
B e 128 256 512 1024 2048 4096 8192 10000 0 0.05 0.10 0.15 0.20
| Batch size Cache ratio
G P U I (b) (c)
I M ° ° °
|

' Model Training G G

® High GPU utilization e Transfer reduction
® Faster execution

GPU

' Feature Gathering
' Model Training

_ 604 —A— GPU utilization (%)
- ok
£ 4Dj ,_,.--1"”"‘
=] /‘
% 20 | h—a
0 T T T ' T
(a)
ESODD | —M— Runtime (s) —A—Memory (GB)
@ Bl ‘u—"'—’*
% | \.\‘._____ — 2
(= - -
é 1500] i A ."--...
D 3 | i I y 1 X
128 256 512 1024 2048 4096 8192 10000
Batch size
(b)

Placing Gather on GPUs

_5§

Large batch size

—

L m
152

10 >
[«]
E

0

~

(3) hard to get both

cache ratio 0.05

ASGUDM — B —Transfer (GB) —aA— Memory (GB) i §

3 5000 " /‘ 6.4

£ | g /‘ |

24000 1 A 4.8

9 | \l\ Pl

%3000 . n/éh'x 3.2

£ - L

= 2000 /* E[1.6

A L
1000 ol ——r 71— 71— 0
0 0.05 0.10 0.15 0.20
Cache ratio

(c)

High cache ratio

0.37

batch size 4096™) 128

Memory (GB)

GPU

: Placing Gather on GPUs

Feature Gathering
Model Training

Issues:

Feature Gather and Model Training

@
T

— e o =)

¥ 'I L] I L I T
128 256 512 1024 2048 4096 8192 10000

Batch size
(b)

_ —A— GPU utilization (%)
B o i
-l:-" 407 ‘..--"""
CRRPE A
g 207 , _a
_________ 0 T T T
(a)
—----- - % 1—m— Runtime (s) —A—Memory (GB) 450
=30004 g A 2
e A
E | e % o =10 2
I - .-"'Iz-‘ =]
z] #
R S [
I 0 0
|
|
|
|

® GPU memory contention

competes for GPU memory resources

6000

)

5000
4000

3000 -

Transfer volume (GB

]
=
=1
(=]

— B —Transfer (GB) —aA— Memory (GB)

T l L]
0.15
Cache ratio

(c)

Memory (GB)

ll Case 4: Placing Sample and Gather on GPUs

TTTTTTTTTTT TS Placing all three steps on the GPU
suffers from GPU memory and resource
contention in case 3 and case 4

CPU

GPU

®©
-
Q
O
-
(¢
Q
3
j=
5.
Q

— o o e e e e e e e e w

ll Case 4: Placing Sample and Gather on GPUs

® Case 4:
CPU
light
GPU

Heavy

TTTTTTTTTTT TS Placing all three steps on the GPU
suffers from GPU memory and resource
contention in case 3 and case 4

— o o e e e e e e e e w

Issues: @ GPU memory and resource contention
® CPU idle

ll Summary

Step-based task orchestrating leads to an imbalanced allocation of
compuvutational and memory resources

)

" GPU resource |
@Sample \ GPU Issue | L contention)
@Gather - £ T C ~\
_ () Inefficient CPU
@ Train @ / | cPu | Issue 2 orocessing
. ssve 3 Inefficient CPU-)
3 steps to 2 devices ssue ' GPU pipelining

\

imbalanced

ll NeutronOrch

Goal:

® Design a new task orchestrating method that avoids dividing takes by
step and fully utilizes heteogeneous resources

Issue 1 " GPU resource |
9 . contention |
@ \ GPU slove lssue 2 " Inefficient CPU
I > | processing |

/7

@ ssve 3 Inefficient CPU-)
ssue GPU pipelining |

new task orchestrating method ?

ll NeutronOrch

Contributions: "GPU rocource
— Issue 1| ¢ ontention
1: Hotness-aware layer-based ~ 7
task Orchestrating S nefficiont CPU
Issue 2 :

_ processing |

2: Super-batch pipelined ——> Issue 3 Inefficient CPU-)
training | GPU pipelining |

Jl Layer-based Task Orchestrating |

Issue 1

slove

>|

GPU resource
contention

]

We decouple the training task by layers and employ the
computation of each sub-task (sample-gather-train) to a specific

device

@Sample @ Gather @ Train %TQL“JQF’ -

Feature
transfer

= Embeddlng

transfer

GPU

@

a

LA\

=
(@@

OO,

T

]

Case 1

CPU[@@@ T j

NeutronOrch

Jl Layer-based Task Orchestrating

Offload bottom layer to CPU based on two observations:

Jl Layer-based Task Orchestrating

Offload bottom layer to CPU based on two observations:
® vertices grows exponentially across layers and bottom layer
constitutes over 50% of the training workload

IV|: 28706
Dim: 128

GNN
model

| 1
Bottom layer

Jl Layer-based Task Orchestrating

Offload bottom layer to CPU based on two observations:
® vertices grows exponentially across layers and bottom layer
constitutes over 50% of the training workload
® CPU-GPU transfer overhead decreases as transferring
compvuted embeddings instead of raw features

[V|]: 86175
Dim: 602 - - - -
(: : CTRER lepu
I\V|: 28706 | CPU GPU
Dim: 128 I I | I [
1| Nk
1| U
=
[- Il | A I
model [| Bottom |krransfe] Other
Transferf Al layers layer layers
e N - JLb
Bottom layer (a) AllTayers on GPU (b) Layer- aﬁed’task

orchestrating

Jl Layer-based Task Orchestrating

Executing a complete bottom layer in the CPU may
cause the CPU processing a new bottleneck

Batchi ... Batch i+n
Layer 2[& é;zé
Batch i ... Batch |+n

\ Heavy CPU computation)

(a) naive layer-based
task orchestrating

Issue 2

lov —
ll Hotness-aware Embedding Reusing E:>['"eff'°'e"t0"”]

processing

Selectively compute the embedding of frequently
accessed vertices and reusing them across batches

GPU Batchi .. Batch i+n
Batchi ... Batchi+n Layer 2

LayerZECé%é ééét Layer1[

CPU CPU @ Hot vertices

Batch i ... Batch |+n
- 1'%%@\@%%% - {%
Hothess-aware
\ Heavy CPU computation) embddings reusing
(a) naive layer-based (b) Hotness-aware

task orchestrating layer-based task orchestrating

ll Hotness-aware Embedding Reusing

CPU

/Hot Vix (version 0)

1

3

5

6

7

9

Bounded stuleness

Hot Vix (version k)

1

3

5

6

7

9

\-

~

J

Batch O

o3

Batch N

Full bottom layer embeddings
for each batch
Reduce CPU
compvutation

\Y4

Hot vertice embeddings with
bounded staleness

ll Hybrid Hot Vertices Processing

When GPU resources are significantly powerful than CPU resources,
CPU computation can only provide limited contribution

multiple powerful GPUs

GPU 0 GPUO GPU1 GPU n

I N 4
(CPU) (CPU) provide limited hot
00000 vertices embeddings
00000) o000) 2

O Hot vertices ratio 20% (O Hot vertices ratio 5%

ll Hybrid Hot Vertices Processing

Assigning hot vertices to both CPU computation and GPU feature

caching
® Minimizing the communication
sl L Sl and compuvutation overhead of
O O O frequently accessed vertices
A Vi . o
" CPU ™ ® Maximizing the utilization of
GPU and CPU memory
OO0
\ J

(OHot vertices to CPU computation 5%
(OHot vertices to GPU feature cache 15%

Issue 3

Inefficient CPU-
GPU pipelining

slove [

| Super-batch Pipelined Training —>

Overlapping tasks across diverse computing resources is essential to
achieve high performance on heterogeneous systems

ll Super-batch Pipelined Training

Overlapping tasks across diverse computing resources is essential to
achieve high performance on heterogeneous systems

Sample-GPU] Gather-GPU []Train-GPU [l Sample-Gather-Train-CPU

ll Super-batch Pipelined Training

Overlapping tasks across diverse computing resources is essential to
achieve high performance on heterogeneous systems

Sample-GPU [Jj] Gather-GPU [Train-GPU [l Sample-Gather-Train-CPU

GPU training must wait for the CPU to finish the
embedding computation for hot vertices

ll Super-batch Pipelined Training

Overlapping tasks across diverse computing resources is essential to
achieve high performance on heterogeneous systems

Sample-GPU . Gather-GPU Train-GPU .Sample-Gather—Train-CPU

Epoch i+1

® Lots of bubbles | ~ _ |

ll Super-batch Pipelined Training

Overlapping tasks across diverse computing resources is essential to
achieve high performance on heterogeneous systems

Sample-GPU . Gather-GPU Train-GPU .Sample-Gather-Train-CPU

Epoch i : Epoch i+1

If the hot vertice embeddings required
for Baich 1 are ready, GPU trianing for
Batch 1 can be started earlier

ll Super-batch Pipelined Training

We partition CPU computation within each epoch into multiple
sub-tasks to explore pipelining opportunities

Sample-GPU . Gather-GPU Train-GPU [] Sample-Gather-Train-CPU
Batch 1to 4 Batch 5to 8

ll Super-batch Pipelined Training

We partition CPU computation within each epoch into multiple
sub-tasks to explore pipelining opportunities

Sample-GPU . Gather-GPU Train-GPU [] Sample-Gather-Train-CPU
Super-batch 1 Super-batch 2

ll Super-batch Pipelined Training

Overlapping GPU and CPU computation tasks while strictly control
the staleness of reused embeddings among super-batches

__|Sample-GPU] Gather-GPU |:|Train-GPU .Sample-Gather-Train-CPU

ll Experimental Setting

Competitors: DGL [Arxiv’'20], GNNLab [Eurosys'22], PaGraph [Socc’'20], GNNAutoScale
ICML'19], DSP [PPoPP'23]

Test Platforms:

Intel Xeon Platinum 8163 CPU (96 cores and 736 GB main memory) and eight NVIDIA V100
(16GB) GPUs

Algor"hms and Datasets: Table 4: Dataset description.

O 3 Graph Neural Networks

Dataset \4 |[E| ftr.dim #L hid. dim
GCN, GIN, GAT Reddit [12] 232.96K 114.61M 602 41 256
O 6 real world graphs Lj-large [1] 10.69M 224.61M 400 60 256
Soft . ; Orkut [51] 3.1M 117M 600 20 160
ofteware Environment: Wikipedia [23] 136M 4372M 600 16 128
O Ubuntu 18.04 LTS Products (PR) [14] 2.4M 61.9M 100 47 64

O CUDA 10.1 (418.67 driver) PaperslOOM (PA)[14] 1M 16B 128 172 6

ll Overall Results

NeutronOrch shows better performance
than the competitors

O 2.91X-11.51X faster than DGL

O 2.68X-9.72X faster than PaGraph

O 1.52X-2.43X faster than GNNLab

O 1.81-9.18X faster than DGL-UVA

O 7.08-11.05X faster than GNNAutoScale

SDGL#ZPaGraph EGNNLab OIDGL-UVA ©GAS ONeutronOrch

Reddit

Products
(e) GAT

Papers100M

80 2000
W 64 - © 1600
@ b @
E 48+ £ 1200 B
5 32 3 800
: ol [0 o
0 oL O 0 © L
Reddit Products Papers100M Lj-large Orkut Wikipedia
a) GCN b) GCN
80 @) 2000 (b)
W 64 1600
o 1)
£ 48 @ 1200
£] -
S 32 £ 800
16 400
0 | = /. ﬂ 0 | |_| SN H
Reddit Products Papers100M Lj-large Orkut Wikipedia
(c) GraphSAGE (d) GraphSAGE
100 2400
Eso_ Tn-.
p - O
2 60 1600 §
s E N
S 40 - € S N
€ | o S 3 8004 | %
» NN OLY), N [) P s
o 1N D ol N llBm N [IB[1 N [Id]

Lj-large

Orkut
(f) GAT

Wikipedia

ll Multi-GPU Performance

EDGL-UVA PaGraph £ GNNLab ODSP [NeutronOrch

30 30 60 o %
18 l 8%
5. N 0) & g |
1201\ $20 S0, = M X
£ |V g | E | : £254 3
T |W E E : = g 7
10 %g g 2107 & 20- : z |\
1V _ %—r"m ' ‘ / %L g%‘lm
1 2 4 8 2 4 8 1 2 4 8 1 2 4 8
GPU# GPU# GPU# GPU#
(a) Products(bs-512) (b) Products(bs-1024) (c) Papers100M(bs-512) (d) Papers100M(bs-1024)

O Compared with DGL-UVA, PaGraph, O NeutronOrch effectively trains large-scale
GNNLab and DSP, NeutronOrch GNNs by offloading computations to the
achieves on average 6.33X, 5.20X, CPU
2.28X, and 1.36X speedups

ll CPU and GPU Utilization

CPU utilization (%) GPU utilization (%) = Runtime (s)

S, G, and T

represent the

sample, gather,

and train

O NeutronOrch fully utilizes

100 30
S 80 - 24
S 60- 7 = - 18 £
e . i =

o
= 40- # - 12 2
5 - # i
20 - R E - 6
o 1 B o S | Z=H
CPU:SG CPU:S CPU:G CPU:-- NeutronOrch
GPU:T GPUGT GPU:ST GPU:SG T (Our solution)

heterogeneousresources and

achieves better performance

O High GPU utilization ensures shorter

runtime, while CPU offloading boosts

performance

ll Summary

NeutronOrch: Rethinking Sample-based GNN Training under CPU-GPU
Heterogeneous Environments

o Providing insight into the four existing approaches

We provide a comprehensive analysis of resource utilization issues associated with the task
orchestrating methods for sample-based GNN systems on GPU-CPU heterogeneous platforms

ll Summary

NeutronOrch: Rethinking Sample-based GNN Training under CPU-GPU
Heterogeneous Environments

o Providing insight into the four existing approaches

We provide a comprehensive analysis of resource utilization issues associated with the task
orchestrating methods for sample-based GNN systems on GPU-CPU heterogeneous platforms

0 Proposing a hotness-aware layer-based task orchesirating method

We propose a hotness-aware layer-based task orchestrating method that effectively leverages the
computation and memory resources of the GPU-CPU heterogeneous system

ll Summary

NeutronOrch: Rethinking Sample-based GNN Training under CPU-GPU
Heterogeneous Environments

o Providing insight into the four existing approaches

We provide a comprehensive analysis of resource utilization issues associated with the task
orchestrating methods for sample-based GNN systems on GPU-CPU heterogeneous platforms

0 Proposing a hotness-aware layer-based task orchesirating method

We propose a hotness-aware layer-based task orchestrating method that effectively leverages the
computation and memory resources of the GPU-CPU heterogeneous system

0 Proposing a super-batch pipelined task scheduling method

We propose a super-batch pipelined task scheduling method that seamlessly overlaps different tasks
on heterogeneous resources and efficiently achieves strict bounded staleness

ll Summary

NeutronOrch: Rethinking Sample-based GNN Training under CPU-GPU
Heterogeneous Environments

[l

0 The codes are publicly available on github

Providing insight into the four existing approaches
We provide a comprehensive analysis of resource utilization issues associated with the task
orchestrating methods for sample-based GNN systems on GPU-CPU heterogeneous platforms
Proposing a hotness-aware layer-based task orchestrating method

We propose a hotness-aware layer-based task orchestrating method that effectively leverages the
computation and memory resources of the GPU-CPU heterogeneous system

Proposing a super-batch pipelined task scheduling methc

We propose a super-batch pipelined task scheduling method that seamlessly

on heterogeneous resources and efficiently achieves strict boundedé’ralgg |bns

N <S

T
—’"

https://github.com/Aix-im/Sample-based-GNN

