
NeutronOrch: Rethinking Sample-based GNN Training under
CPU-GPU Heterogeneous Environments

Xin Ai, Qiange Wang, Chunyu Cao, Yanfeng Zhang, Chaoyi
Chen, Hao Yuan, Yu Gu, Ge Yu

School of Computer Science and Engineering
Northeastern University, Shenyang, China

Graph Neural Network

(b) Knowledge Graph(a) Social Networks (c) Biological networks

Challeng from Industry

GNN dataset size and current GPU capacities [Legion:ATC’23]

Challeng from Industry

GNN dataset size and current GPU capacities [Legion:ATC’23]

CPU-GPU Heterogeneous Platforms
+

Sampling-based GNN Training

CPU and GPU

p CPU：Large Memory Capacity(main memory)；Low Parallelism
p GPU：Limited Memeory Capacity；High Parallelism

CORE CORE

CORE CORE

CORE

CORE

Host Mem.

Global Mem.

CPU GPU

Sampling-based GNN
l Three Key Steps:

1.Graph Sampling 2. Feature Gathering 3. Model Training

Sampling-based GNN
l Three Key Steps:

1.Graph Sampling 3. Model Training2. Feature Gathering

Sampling-based GNN
l Three Key Steps:

1.Graph Sampling 3. Model Training2. Feature Gathering

Sampling-based GNN
l Three Key Steps:

1.Graph Sampling 3. Model Training2. Feature Gathering

Existing GNN Systems
Step-based task orchestrating methods

1.Graph Sampling

2. Feature Gathering

3. Model Training

Assigning three steps
to CPU and GPU

CPU

GPU

Existing GNN Systems
Step-based task orchestrating methods

CPU

GPU

Graph Sampling
Feature Gathering

Model Training

DGL [Arxiv’19]

Task Orchestrating Method Classification

Graph Sampling

Feature Gathering

Model Training

Task Orchestrating Method Classification

Existing task orchestrating methods contain mainly four cases

Graph Sampling

Feature Gathering

Model Training

Case 1: Placing Sample and Gather on CPUs
Graph Sampling and Feature Gather
occupy 80.5 % of the total runtime CPU

GPU

Graph Sampling
Feature Gathering

Model Training

Case 1: Placing Sample and Gather on CPUs

Heavy

light

l inefficient CPU processing

l Low GPU utilization

Issues:

CPU

GPU

Graph Sampling
Feature Gathering

Model Training

Case 2: Placing Sample on GPUs

CPU

GPU
Graph Sampling

Feature Gathering

Model Training

Case 2: Placing Sample on GPUs
Graph Sampling and Model Training
competes for GPU computation resources CPU

GPU
Graph Sampling

Feature Gathering

Model Training

Case 2: Placing Sample on GPUs
Graph Sampling and Model Training
competes for GPU computation resources CPU

GPU
Graph Sampling

Feature Gathering

Model Training

Case 2: Placing Sample on GPUs
Graph Sampling and Model Training
competes for GPU computation resources CPU

GPU
Graph Sampling

Feature Gathering

Model Training

Case 2: Placing Sample on GPUs

Heavy

light

l GPU resource contention Issues:

CPU

GPU
Graph Sampling

Feature Gathering

Model Training

Case 3: Placing Gather on GPUs
Feature Gather and Model Training
competes for GPU memory resources CPU

GPU

Graph Sampling

Feature Gathering
Model Training

Case 3: Placing Gather on GPUs

l High GPU utilization
l Faster execution

Large batch size

CPU

GPU

Graph Sampling

Feature Gathering
Model Training

Case 3: Placing Gather on GPUs

l High GPU utilization
l Faster execution

Large batch size

l Transfer reduction

High cache ratio

CPU

GPU

Graph Sampling

Feature Gathering
Model Training

Case 3: Placing Gather on GPUs

Large batch size High cache ratio

CPU

GPU

Graph Sampling

Feature Gathering
Model Training

Case 3: Placing Gather on GPUs

l GPU memory contentionIssues:

CPU

GPU

Graph Sampling

Feature Gathering
Model Training

Feature Gather and Model Training
competes for GPU memory resources

Case 4: Placing Sample and Gather on GPUs

Placing all three steps on the GPU
suffers from GPU memory and resource
contention in case 3 and case 4

CPU

GPU Graph Sampling
Feature Gathering
Model Training

Case 4: Placing Sample and Gather on GPUs
l Case 4:

Placing all three steps on the GPU
suffers from GPU memory and resource
contention in case 3 and case 4

Heavy

light

l GPU memory and resource contention
l CPU idle

Issues:

CPU

GPU Graph Sampling
Feature Gathering
Model Training

Summary
Step-based task orchestrating leads to an imbalanced allocation of
computational and memory resources

3 steps to 2 devices

imbalanced

GPU resource
contention Issue 1

Inefficient CPU
processingIssue 2

Issue 3 Inefficient CPU-
GPU pipelining

NeutronOrch

l Design a new task orchestrating method that avoids dividing takes by
step and fully utilizes heteogeneous resources

Goal:

new task orchestrating method

GPU resource
contention Issue 1

Inefficient CPU
processingIssue 2

Issue 3

slove

Inefficient CPU-
GPU pipelining

NeutronOrch

1：Hotness-aware layer-based
task Orchestrating

Contributions: GPU resource
contention Issue 1

Inefficient CPU
processingIssue 2

Inefficient CPU-
GPU pipeliningIssue 32：Super-batch pipelined

training

Layer-based Task Orchestrating
We decouple the training task by layers and employ the
computation of each sub-task (sample-gather-train) to a specific
device

GPU resource
contention

slove
Issue 1

Layer-based Task Orchestrating
Offload bottom layer to CPU based on two observations:

Layer-based Task Orchestrating
Offload bottom layer to CPU based on two observations:
l vertices grows exponentially across layers and bottom layer

constitutes over 50% of the training workload

Layer-based Task Orchestrating
Offload bottom layer to CPU based on two observations:
l vertices grows exponentially across layers and bottom layer

constitutes over 50% of the training workload
l CPU-GPU transfer overhead decreases as transferring

computed embeddings instead of raw features

Layer-based Task Orchestrating
Executing a complete bottom layer in the CPU may
cause the CPU processing a new bottleneck

Hotness-aware Embedding Reusing
Selectively compute the embedding of frequently
accessed vertices and reusing them across batches

Inefficient CPU
processing

slove
Issue 2

Hotness-aware Embedding Reusing

32 75

1 3 5

Hot Vtx (version 0)
6 7 9

CPU

GPU Batch 0

... 6 97

Batch N

Bounded staleness

1 3 5 6 7 9
Hot Vtx (version k)

Full bottom layer embeddings
for each batch

Reduce CPU
computation

Hot vertice embeddings with
bounded staleness

Hybrid Hot Vertices Processing
When GPU resources are significantly powerful than CPU resources,
CPU computation can only provide limited contribution

multiple powerful GPUs

provide limited hot
vertices embeddings

Hybrid Hot Vertices Processing
Assigning hot vertices to both CPU computation and GPU feature
caching

l Minimizing the communication
and computation overhead of
frequently accessed vertices

l Maximizing the utilization of
GPU and CPU memory

Super-batch Pipelined Training
Overlapping tasks across diverse computing resources is essential to
achieve high performance on heterogeneous systems

slove
Issue 3

Inefficient CPU-
GPU pipelining

Super-batch Pipelined Training
Overlapping tasks across diverse computing resources is essential to
achieve high performance on heterogeneous systems

Super-batch Pipelined Training
Overlapping tasks across diverse computing resources is essential to
achieve high performance on heterogeneous systems

GPU training must wait for the CPU to finish the
embedding computation for hot vertices

Super-batch Pipelined Training
Overlapping tasks across diverse computing resources is essential to
achieve high performance on heterogeneous systems

Lots of bubbles

Super-batch Pipelined Training
Overlapping tasks across diverse computing resources is essential to
achieve high performance on heterogeneous systems

If the hot vertice embeddings required
for Batch 1 are ready, GPU trianing for
Batch 1 can be started earlier

1

Super-batch Pipelined Training
We partition CPU computation within each epoch into multiple
sub-tasks to explore pipelining opportunities

Super-batch Pipelined Training
We partition CPU computation within each epoch into multiple
sub-tasks to explore pipelining opportunities

Super-batch Pipelined Training
Overlapping GPU and CPU computation tasks while strictly control
the staleness of reused embeddings among super-batches

Experimental Setting

Competitors: DGL [Arxiv’20], [Eurosys’22], [Socc’20],

[ICML’19], [PPoPP’23]

Test Platforms:
Intel Xeon Platinum 8163 CPU (96 cores and 736 GB main memory) and eight NVIDIA V100
(16GB) GPUs

Algorithms and Datasets:
p 3 Graph Neural Networks

GCN, GIN, GAT
p 6 real world graphs

Softeware Environment：
p Ubuntu 18.04 LTS
p CUDA 10.1 (418.67 driver)

Overall Results

NeutronOrch shows better performance
than the competitors
p 2.91X-11.51X faster than DGL

p 2.68X-9.72X faster than PaGraph

p 1.52X-2.43X faster than GNNLab

p 1.81-9.18X faster than DGL-UVA

p 7.08-11.05X faster than GNNAutoScale

Multi-GPU Performance

p Compared with DGL-UVA, PaGraph,

GNNLab and DSP, NeutronOrch

achieves on average 6.33X, 5.20X,

2.28X, and 1.36X speedups

p NeutronOrch effectively trains large-scale

GNNs by offloading computations to the

CPU

CPU and GPU Utilization

 fully utilizes

heterogeneousresources and

achieves better performance

p High GPU utilization ensures shorter

runtime, while CPU offloading boosts

performance

NeutronOrch: Rethinking Sample-based GNN Training under CPU-GPU
Heterogeneous Environments
□ Providing insight into the four existing approaches

Summary

We provide a comprehensive analysis of resource utilization issues associated with the task
orchestrating methods for sample-based GNN systems on GPU-CPU heterogeneous platforms

NeutronOrch: Rethinking Sample-based GNN Training under CPU-GPU
Heterogeneous Environments
□ Providing insight into the four existing approaches

□ Proposing a hotness-aware layer-based task orchestrating method

Summary

We provide a comprehensive analysis of resource utilization issues associated with the task
orchestrating methods for sample-based GNN systems on GPU-CPU heterogeneous platforms

We propose a hotness-aware layer-based task orchestrating method that effectively leverages the
computation and memory resources of the GPU-CPU heterogeneous system

NeutronOrch: Rethinking Sample-based GNN Training under CPU-GPU
Heterogeneous Environments
□ Providing insight into the four existing approaches

□ Proposing a hotness-aware layer-based task orchestrating method

□ Proposing a super-batch pipelined task scheduling method

Summary

We provide a comprehensive analysis of resource utilization issues associated with the task
orchestrating methods for sample-based GNN systems on GPU-CPU heterogeneous platforms

We propose a hotness-aware layer-based task orchestrating method that effectively leverages the
computation and memory resources of the GPU-CPU heterogeneous system

We propose a super-batch pipelined task scheduling method that seamlessly overlaps different tasks
on heterogeneous resources and efficiently achieves strict bounded staleness

NeutronOrch: Rethinking Sample-based GNN Training under CPU-GPU
Heterogeneous Environments
□ Providing insight into the four existing approaches

□ Proposing a hotness-aware layer-based task orchestrating method

□ Proposing a super-batch pipelined task scheduling method

Summary

We provide a comprehensive analysis of resource utilization issues associated with the task
orchestrating methods for sample-based GNN systems on GPU-CPU heterogeneous platforms

We propose a hotness-aware layer-based task orchestrating method that effectively leverages the
computation and memory resources of the GPU-CPU heterogeneous system

We propose a super-batch pipelined task scheduling method that seamlessly overlaps different tasks
on heterogeneous resources and efficiently achieves strict bounded stalenessQuestions

https://github.com/Aix-im/Sample-based-GNN

